skip to main content


Search for: All records

Creators/Authors contains: "Xie, Yujun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microstructural changes induced by helium implantation in materials lead to volumetric swelling and mechanical property changes. How these properties are linked and establishing direct relationships can be difficult due to the underlying material’s microstructure evolution. Some materials also experience a phase change due to irradiation damage making them even more complex to analyze. Here, single crystalline Si (100) was used to establish a relationship among these parameters. The swelling height as a function of implantation fluence can equally fit a linear relationship. Solely irradiation induced defects are observed at low fluence below 5.0 × 10 16  ions/cm 2 . An abrupt amorphous and crystalline mixed layer of ∼200 nm thick within a highly damaged polycrystalline matrix is observed when implantation fluence exceeds 5.0 × 10 16  ions/cm 2 , leading to the appearance of irradiation induced swelling and hardening behavior. As the fluence increases beyond 1.0 × 10 17  ions/cm 2 , the amorphous layer expands in size and the bubble size distribution takes the form of a Gaussian distribution with a maximum size of up to 6.4 nm, which causes a further increase in the height of swelling. Furthermore, irradiation induced softening appeared due to the enlarged bubble size and amorphization. 
    more » « less
  2. Abstract

    The energetic chemical reaction between Zn(NO3)2and Li is used to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12(LLZTO) electrolyte. This interlayer, composed of Zn, ZnLixalloy, Li3N, Li2O, and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency, and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. All‐solid‐state Li||Li cells can operate at very demanding current–capacity conditions of 4 mA cm−2–8 mAh cm−2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency >99.5 % without dendrite formation or side reactions with the electrolyte.

     
    more » « less
  3. Abstract

    The energetic chemical reaction between Zn(NO3)2and Li is used to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12(LLZTO) electrolyte. This interlayer, composed of Zn, ZnLixalloy, Li3N, Li2O, and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency, and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. All‐solid‐state Li||Li cells can operate at very demanding current–capacity conditions of 4 mA cm−2–8 mAh cm−2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency >99.5 % without dendrite formation or side reactions with the electrolyte.

     
    more » « less
  4. Abstract

    Understanding and possibly recovering from the failure mechanisms of phase change memories (PCMs) are critical to improving their cycle life. Extensive electrical testing and postfailure electron microscopy analysis have shown that stuck–set failure can be recovered. Here, self‐healing of novel confined PCM devices is directly shown by controlling the electromigration of the phase change material at the nanoscale. In contrast to the current mushroom PCM, the confined PCM has a metallic surfactant layer, which enables effective Joule heating to control the phase change material even in the presence of a large void. In situ transmission electron microscope movies show that the voltage polarity controls the direction of electromigration of the phase change material, which can be used to fill nanoscale voids that form during programing. Surprisingly, a single voltage pulse can induce dramatic migration of antimony (Sb) due to high current density in the PCM device. Based on the finding, self‐healing of a large void inside a confined PCM device with a metallic liner is demonstrated for the first time.

     
    more » « less
  5. Abstract

    Black phosphorus (BP) has recently attracted significant attention due to its exceptional physical properties. Currently, high‐quality few‐layer and thin‐film BP are produced primarily by mechanical exfoliation, limiting their potential in future applications. Here, the synthesis of highly crystalline thin‐film BP on 5 mm sapphire substrates by conversion from red to black phosphorus at 700 °C and 1.5 GPa is demonstrated. The synthesized ≈50 nm thick BP thin films are polycrystalline with a crystal domain size ranging from 40 to 70 µm long, as indicated by Raman mapping and infrared extinction spectroscopy. At room temperature, field‐effect mobility of the synthesized BP thin film is found to be around 160 cm2V−1s−1along armchair direction and reaches up to about 200 cm2V−1s−1at around 90 K. Moreover, red phosphorus (RP) covered by exfoliated hexagonal boron nitride (hBN) before conversion shows atomically sharp hBN/BP interface and perfectly layered BP after the conversion. This demonstration represents a critical step toward the future realization of large scale, high‐quality BP devices and circuits.

     
    more » « less
  6. Large‐scale, polycrystalline WTe2thin films are synthesized by atmospheric chemical vapor reaction of W metal films with Te vapor catalyzed by H2Te intermediates, paving a way to understanding the synthesis mechanism for low bonding energy tellurides and toward synthesis of single‐crystalline telluride nanoflakes. Through‐plane and in‐plane thermal conductivities of single‐crystal WTe2flakes and polycrystalline WTe2thin films are measured for the first time. Nanoscale grains and disorder in WTe2thin films suppress the in‐plane thermal conductivity of WTe2greatly, which is at least 7.5 times lower than that of the single‐crystalline flakes.

     
    more » « less